Broad-Scale Recombination Patterns Underlying Proper Disjunction in Humans
نویسندگان
چکیده
Although recombination is essential to the successful completion of human meiosis, it remains unclear how tightly the process is regulated and over what scale. To assess the nature and stringency of constraints on human recombination, we examined crossover patterns in transmissions to viable, non-trisomic offspring, using dense genotyping data collected in a large set of pedigrees. Our analysis supports a requirement for one chiasma per chromosome rather than per arm to ensure proper disjunction, with additional chiasmata occurring in proportion to physical length. The requirement is not absolute, however, as chromosome 21 seems to be frequently transmitted properly in the absence of a chiasma in females, a finding that raises the possibility of a back-up mechanism aiding in its correct segregation. We also found a set of double crossovers in surprisingly close proximity, as expected from a second pathway that is not subject to crossover interference. These findings point to multiple mechanisms that shape the distribution of crossovers, influencing proper disjunction in humans.
منابع مشابه
Age-Dependent Recombination Rates in Human Pedigrees
In humans, chromosome-number abnormalities have been associated with altered recombination and increased maternal age. Therefore, age-related effects on recombination are of major importance, especially in relation to the mechanisms involved in human trisomies. Here, we examine the relationship between maternal age and recombination rate in humans. We localized crossovers at high resolution by ...
متن کاملI-35: Polar Body Analysis by Array CGH Identifies Women with Varying Susceptibility to Aneuploidy and Suggests that Non-disjunction Is Not The Predominant Mechanism Leading to Aneuploidy in Humans
Background: The maternal age effect for trisomy is well known. However what is less established is whether certain women are more (or less) prone to segregation errors, independent of age. Trisomy arises primarily through maternal meiosis I chromosome segregation errors however the precise mechanism by which these errors occur is unclear. Current dogma attributes the origin of trisomy to malseg...
متن کاملGenome-wide variation in recombination in female meiosis: a risk factor for non-disjunction of chromosome 21.
Altered recombination patterns along non-disjoined chromosomes is the first molecular correlate identified for non-disjunction in humans. To understand better the factors related to this correlate, we have asked to what extent is recombination altered in an egg with a disomic chromosome: are patterns limited to the non-disjoined chromosome or do they extend to the entire cell? More specifically...
متن کاملA Pedigree-Based Map of Recombination in the Domestic Dog Genome
Meiotic recombination in mammals has been shown to largely cluster into hotspots, which are targeted by the chromatin modifier PRDM9. The canid family, including wolves and dogs, has undergone a series of disrupting mutations in this gene, rendering PRDM9 inactive. Given the importance of PRDM9 it is of great interest to learn how its absence in the dog genome affects patterns of recombination ...
متن کاملRelationship of recombination patterns and maternal age among non-disjoined chromosomes 21.
Advancing maternal age has long been identified as the primary risk factor for human chromosome trisomy. More recently, altered patterns of meiotic recombination have been found to be associated with non-disjunction. We have used trisomy 21 as a model for human non-disjunction that occurs during the formation of oocytes to understand the role of maternal age and recombination. Patterns of recom...
متن کامل